首页> 外文OA文献 >Assessing heat tracing experiment data sets for direct forecast of temperature evolution in subsurface models: an example of well and geophysical monitoring data
【2h】

Assessing heat tracing experiment data sets for direct forecast of temperature evolution in subsurface models: an example of well and geophysical monitoring data

机译:评估伴热实验数据集以直接预测地下模型中的温度变化:井和地球物理监测数据的示例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hydrogeological inverse modeling is used for integrating data and calibrating subsurface model parameters. On one hand, deterministic approaches are relatively fast but fail to catch the uncertainty related to the spatial distribution of model parameters. On the other hand, stochastic inverse modeling is time-consuming and sampling the full high-dimensional parameter space is generally impossible. Even then, the end result is not the inverted model itself, but the forecast built from such models.In this study, we investigate a prediction-focused approach (PFA) in order to derive a direct statistical relationship between data and forecast without explicitly calibrating any models to the data. To derive this relationship, we first sample a limited number of models from the prior distribution using geostatistical methods. For each model, we then apply two forward simulations: the first corresponds to the forward model of the data (past), the second corresponds to the forward model of the forecast (future).The relationship between observed data and forecast is generally highly non-linear, depending on the complexity of the prior distribution and the differences in the two forward operators. In order to derive a useful relationship, we first reduce the dimension of the data and the forecast through principal component analysis (PCA) related techniques in order to keep the most informative part of both sets. Then, we apply canonical correlation analysis (CCA) to establish a linear relationship between data and forecast in the reduced space components. If such a relationship exists, it is possible to directly sample the posterior distribution of the forecast with a multi-Gaussian framework.In this study, we apply this methodology to forecast the evolution with time of the distribution of temperature in a control panel in an alluvial aquifer. We simulate a heat tracing experiment monitored with both well logging probes and electrical resistivity tomography. We show (1) that the proposed method can be used to quantify the uncertainty on the forecast both spatially and temporally and (2) that spatially-distributed data acquired through geophysical methods help to significantly reduce the uncertainty of the posterior.
机译:水文地质逆模型用于整合数据和校准地下模型参数。一方面,确定性方法相对较快,但未能捕获与模型参数的空间分布有关的不确定性。另一方面,随机逆建模非常耗时,对整个高维参数空间进行采样通常是不可能的。即使这样,最终结果也不是倒置模型本身,而是从此类模型构建的预测。在本研究中,我们研究了一种以预测为重点的方法(PFA),以便在不明确校准的情况下得出数据与预测之间的直接统计关系。数据的任何模型。为了得出这种关系,我们首先使用地统计方法从先验分布中抽取有限数量的模型。对于每种模型,我们然后应用两个正向模拟:第一个对应于数据的正向模型(过去),第二个对应于预测的正向模型(未来)。观察到的数据与预测之间的关系通常高度不相关-线性,取决于先验分布的复杂性和两个正向运算符的差异。为了得出有用的关系,我们首先通过主成分分析(PCA)相关技术来减少数据和预测的维数,以使这两个集合的信息量最大。然后,我们应用规范相关分析(CCA)在缩小的空间分量中建立数据与预测之间的线性关系。如果存在这种关系,则可以使用多高斯框架直接对预测的后验分布进行采样。在本研究中,我们将这种方法应用于预测控制面板中温度分布随时间的演变。冲积含水层。我们模拟了一个测井探针和电阻层析成像监测的伴热实验。我们表明(1)所提出的方法可用于量化时空预测的不确定性,以及(2)通过地球物理方法获取的空间分布数据有助于显着降低后验的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号